Metamath Proof Explorer


Theorem frmdbas

Description: The base set of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses frmdbas.m M=freeMndI
frmdbas.b B=BaseM
Assertion frmdbas IVB=WordI

Proof

Step Hyp Ref Expression
1 frmdbas.m M=freeMndI
2 frmdbas.b B=BaseM
3 eqidd IVWordI=WordI
4 eqid ++WordI×WordI=++WordI×WordI
5 1 3 4 frmdval IVM=BasendxWordI+ndx++WordI×WordI
6 5 fveq2d IVBaseM=BaseBasendxWordI+ndx++WordI×WordI
7 wrdexg IVWordIV
8 eqid BasendxWordI+ndx++WordI×WordI=BasendxWordI+ndx++WordI×WordI
9 8 grpbase WordIVWordI=BaseBasendxWordI+ndx++WordI×WordI
10 7 9 syl IVWordI=BaseBasendxWordI+ndx++WordI×WordI
11 6 10 eqtr4d IVBaseM=WordI
12 2 11 eqtrid IVB=WordI