Metamath Proof Explorer


Theorem gencbvex2

Description: Restatement of gencbvex with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006)

Ref Expression
Hypotheses gencbvex2.1 AV
gencbvex2.2 A=yφψ
gencbvex2.3 A=yχθ
gencbvex2.4 θxχA=y
Assertion gencbvex2 xχφyθψ

Proof

Step Hyp Ref Expression
1 gencbvex2.1 AV
2 gencbvex2.2 A=yφψ
3 gencbvex2.3 A=yχθ
4 gencbvex2.4 θxχA=y
5 3 biimpac χA=yθ
6 5 exlimiv xχA=yθ
7 4 6 impbii θxχA=y
8 1 2 3 7 gencbvex xχφyθψ