Metamath Proof Explorer


Theorem harval

Description: Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion harval XVharX=yOn|yX

Proof

Step Hyp Ref Expression
1 elex XVXV
2 breq2 x=XyxyX
3 2 rabbidv x=XyOn|yx=yOn|yX
4 df-har har=xVyOn|yx
5 hartogs xVyOn|yxOn
6 3 4 5 fvmpt3 XVharX=yOn|yX
7 1 6 syl XVharX=yOn|yX