Metamath Proof Explorer


Theorem hba1-o

Description: The setvar x is not free in A. x ph . Example in Appendix in Megill p. 450 (p. 19 of the preprint). Also Lemma 22 of Monk2 p. 114. (Contributed by NM, 24-Jan-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hba1-o xφxxφ

Proof

Step Hyp Ref Expression
1 ax-c5 x¬xφ¬xφ
2 1 con2i xφ¬x¬xφ
3 ax10fromc7 ¬x¬xφx¬x¬xφ
4 ax10fromc7 ¬xφx¬xφ
5 4 con1i ¬x¬xφxφ
6 5 alimi x¬x¬xφxxφ
7 2 3 6 3syl xφxxφ