Metamath Proof Explorer


Theorem hbntg

Description: A more general form of hbnt . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion hbntg xφxψ¬ψx¬φ

Proof

Step Hyp Ref Expression
1 axc7 ¬x¬xψψ
2 1 con1i ¬ψx¬xψ
3 con3 φxψ¬xψ¬φ
4 3 al2imi xφxψx¬xψx¬φ
5 2 4 syl5 xφxψ¬ψx¬φ