Metamath Proof Explorer


Theorem hlatexch2

Description: Atom exchange property. (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses hlatexchb.l ˙=K
hlatexchb.j ˙=joinK
hlatexchb.a A=AtomsK
Assertion hlatexch2 KHLPAQARAPRP˙Q˙RQ˙P˙R

Proof

Step Hyp Ref Expression
1 hlatexchb.l ˙=K
2 hlatexchb.j ˙=joinK
3 hlatexchb.a A=AtomsK
4 hlcvl KHLKCvLat
5 1 2 3 cvlatexch2 KCvLatPAQARAPRP˙Q˙RQ˙P˙R
6 4 5 syl3an1 KHLPAQARAPRP˙Q˙RQ˙P˙R