Metamath Proof Explorer


Theorem hlatexchb1

Description: A version of hlexchb1 for atoms. (Contributed by NM, 15-Nov-2011)

Ref Expression
Hypotheses hlatexchb.l ˙=K
hlatexchb.j ˙=joinK
hlatexchb.a A=AtomsK
Assertion hlatexchb1 KHLPAQARAPRP˙R˙QR˙P=R˙Q

Proof

Step Hyp Ref Expression
1 hlatexchb.l ˙=K
2 hlatexchb.j ˙=joinK
3 hlatexchb.a A=AtomsK
4 hlcvl KHLKCvLat
5 1 2 3 cvlatexchb1 KCvLatPAQARAPRP˙R˙QR˙P=R˙Q
6 4 5 syl3an1 KHLPAQARAPRP˙R˙QR˙P=R˙Q