Metamath Proof Explorer


Theorem hlexch2

Description: A Hilbert lattice has the exchange property. (Contributed by NM, 6-May-2012)

Ref Expression
Hypotheses hlsuprexch.b B=BaseK
hlsuprexch.l ˙=K
hlsuprexch.j ˙=joinK
hlsuprexch.a A=AtomsK
Assertion hlexch2 KHLPAQAXB¬P˙XP˙Q˙XQ˙P˙X

Proof

Step Hyp Ref Expression
1 hlsuprexch.b B=BaseK
2 hlsuprexch.l ˙=K
3 hlsuprexch.j ˙=joinK
4 hlsuprexch.a A=AtomsK
5 hlcvl KHLKCvLat
6 1 2 3 4 cvlexch2 KCvLatPAQAXB¬P˙XP˙Q˙XQ˙P˙X
7 5 6 syl3an1 KHLPAQAXB¬P˙XP˙Q˙XQ˙P˙X