Metamath Proof Explorer


Theorem hlexch4N

Description: A Hilbert lattice has the exchange property. Part of Definition 7.8 of MaedaMaeda p. 32. (Contributed by NM, 15-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses hlexch3.b B=BaseK
hlexch3.l ˙=K
hlexch3.j ˙=joinK
hlexch3.m ˙=meetK
hlexch3.z 0˙=0.K
hlexch3.a A=AtomsK
Assertion hlexch4N KHLPAQAXBP˙X=0˙P˙X˙QX˙P=X˙Q

Proof

Step Hyp Ref Expression
1 hlexch3.b B=BaseK
2 hlexch3.l ˙=K
3 hlexch3.j ˙=joinK
4 hlexch3.m ˙=meetK
5 hlexch3.z 0˙=0.K
6 hlexch3.a A=AtomsK
7 hlcvl KHLKCvLat
8 1 2 3 4 5 6 cvlexch4N KCvLatPAQAXBP˙X=0˙P˙X˙QX˙P=X˙Q
9 7 8 syl3an1 KHLPAQAXBP˙X=0˙P˙X˙QX˙P=X˙Q