Metamath Proof Explorer


Theorem hlexchb1

Description: A Hilbert lattice has the exchange property. (Contributed by NM, 16-Nov-2011)

Ref Expression
Hypotheses hlsuprexch.b B=BaseK
hlsuprexch.l ˙=K
hlsuprexch.j ˙=joinK
hlsuprexch.a A=AtomsK
Assertion hlexchb1 KHLPAQAXB¬P˙XP˙X˙QX˙P=X˙Q

Proof

Step Hyp Ref Expression
1 hlsuprexch.b B=BaseK
2 hlsuprexch.l ˙=K
3 hlsuprexch.j ˙=joinK
4 hlsuprexch.a A=AtomsK
5 hlcvl KHLKCvLat
6 1 2 3 4 cvlexchb1 KCvLatPAQAXB¬P˙XP˙X˙QX˙P=X˙Q
7 5 6 syl3an1 KHLPAQAXB¬P˙XP˙X˙QX˙P=X˙Q