Metamath Proof Explorer


Theorem iineq1d

Description: Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypothesis iineq1d.1 φA=B
Assertion iineq1d φxAC=xBC

Proof

Step Hyp Ref Expression
1 iineq1d.1 φA=B
2 iineq1 A=BxAC=xBC
3 1 2 syl φxAC=xBC