Metamath Proof Explorer


Theorem imnegd

Description: Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis recld.1 φA
Assertion imnegd φA=A

Proof

Step Hyp Ref Expression
1 recld.1 φA
2 imneg AA=A
3 1 2 syl φA=A