Metamath Proof Explorer


Theorem imnegi

Description: Imaginary part of negative. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypothesis recl.1 A
Assertion imnegi A=A

Proof

Step Hyp Ref Expression
1 recl.1 A
2 imneg AA=A
3 1 2 ax-mp A=A