Metamath Proof Explorer


Theorem imval

Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imval AA=Ai

Proof

Step Hyp Ref Expression
1 fvoveq1 x=Axi=Ai
2 df-im =xxi
3 fvex AiV
4 1 2 3 fvmpt AA=Ai