Metamath Proof Explorer


Theorem ipsaddg

Description: The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
Assertion ipsaddg +˙V+˙=+A

Proof

Step Hyp Ref Expression
1 ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
2 1 ipsstr AStruct18
3 plusgid +𝑔=Slot+ndx
4 snsstp2 +ndx+˙BasendxB+ndx+˙ndx×˙
5 ssun1 BasendxB+ndx+˙ndx×˙BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
6 5 1 sseqtrri BasendxB+ndx+˙ndx×˙A
7 4 6 sstri +ndx+˙A
8 2 3 7 strfv +˙V+˙=+A