Metamath Proof Explorer


Theorem ipsip

Description: The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
Assertion ipsip IVI=𝑖A

Proof

Step Hyp Ref Expression
1 ipspart.a A=BasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
2 1 ipsstr AStruct18
3 ipid 𝑖=Slot𝑖ndx
4 snsstp3 𝑖ndxIScalarndxSndx·˙𝑖ndxI
5 ssun2 ScalarndxSndx·˙𝑖ndxIBasendxB+ndx+˙ndx×˙ScalarndxSndx·˙𝑖ndxI
6 5 1 sseqtrri ScalarndxSndx·˙𝑖ndxIA
7 4 6 sstri 𝑖ndxIA
8 2 3 7 strfv IVI=𝑖A