Metamath Proof Explorer


Theorem isch

Description: Closed subspace H of a Hilbert space. (Contributed by NM, 17-Aug-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion isch HCHSvHH

Proof

Step Hyp Ref Expression
1 oveq1 h=Hh=H
2 1 imaeq2d h=Hvh=vH
3 id h=Hh=H
4 2 3 sseq12d h=HvhhvHH
5 df-ch C=hS|vhh
6 4 5 elrab2 HCHSvHH