Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Infinite Cartesian products
ixp0x
Next ⟩
ixpssmap2g
Metamath Proof Explorer
Ascii
Unicode
Theorem
ixp0x
Description:
An infinite Cartesian product with an empty index set.
(Contributed by
NM
, 21-Sep-2007)
Ref
Expression
Assertion
ixp0x
⊢
⨉
x
∈
∅
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
dfixp
⊢
⨉
x
∈
∅
A
=
f
|
f
Fn
∅
∧
∀
x
∈
∅
f
⁡
x
∈
A
2
velsn
⊢
f
∈
∅
↔
f
=
∅
3
fn0
⊢
f
Fn
∅
↔
f
=
∅
4
ral0
⊢
∀
x
∈
∅
f
⁡
x
∈
A
5
4
biantru
⊢
f
Fn
∅
↔
f
Fn
∅
∧
∀
x
∈
∅
f
⁡
x
∈
A
6
2
3
5
3bitr2i
⊢
f
∈
∅
↔
f
Fn
∅
∧
∀
x
∈
∅
f
⁡
x
∈
A
7
6
eqabi
⊢
∅
=
f
|
f
Fn
∅
∧
∀
x
∈
∅
f
⁡
x
∈
A
8
1
7
eqtr4i
⊢
⨉
x
∈
∅
A
=
∅