Metamath Proof Explorer


Theorem lejoin1

Description: A join's first argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011)

Ref Expression
Hypotheses joinval2.b B=BaseK
joinval2.l ˙=K
joinval2.j ˙=joinK
joinval2.k φKV
joinval2.x φXB
joinval2.y φYB
joinlem.e φXYdom˙
Assertion lejoin1 φX˙X˙Y

Proof

Step Hyp Ref Expression
1 joinval2.b B=BaseK
2 joinval2.l ˙=K
3 joinval2.j ˙=joinK
4 joinval2.k φKV
5 joinval2.x φXB
6 joinval2.y φYB
7 joinlem.e φXYdom˙
8 1 2 3 4 5 6 7 joinlem φX˙X˙YY˙X˙YzBX˙zY˙zX˙Y˙z
9 8 simplld φX˙X˙Y