Metamath Proof Explorer


Theorem lublem

Description: Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses lublem.b B=BaseK
lublem.l ˙=K
lublem.u U=lubK
Assertion lublem KCLatSBySy˙USzBySy˙zUS˙z

Proof

Step Hyp Ref Expression
1 lublem.b B=BaseK
2 lublem.l ˙=K
3 lublem.u U=lubK
4 simpl KCLatSBKCLat
5 1 3 clatlubcl2 KCLatSBSdomU
6 1 2 3 4 5 lubprop KCLatSBySy˙USzBySy˙zUS˙z