Metamath Proof Explorer


Theorem mapsn

Description: The value of set exponentiation with a singleton exponent. Theorem 98 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Proof shortened by AV, 17-Jul-2022)

Ref Expression
Hypotheses map0.1 AV
map0.2 BV
Assertion mapsn AB=f|yAf=By

Proof

Step Hyp Ref Expression
1 map0.1 AV
2 map0.2 BV
3 id AVAV
4 2 a1i AVBV
5 3 4 mapsnd AVAB=f|yAf=By
6 1 5 ax-mp AB=f|yAf=By