Metamath Proof Explorer


Theorem mapsnen

Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Revised by Mario Carneiro, 15-Nov-2014) (Proof shortened by AV, 17-Jul-2022)

Ref Expression
Hypotheses mapsnen.1 AV
mapsnen.2 BV
Assertion mapsnen ABA

Proof

Step Hyp Ref Expression
1 mapsnen.1 AV
2 mapsnen.2 BV
3 id AVAV
4 2 a1i AVBV
5 3 4 mapsnend AVABA
6 1 5 ax-mp ABA