Metamath Proof Explorer


Theorem mdandyv11

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv11.1 φ
mdandyv11.2 ψ
mdandyv11.3 χ
mdandyv11.4 θ
mdandyv11.5 τ
mdandyv11.6 η
Assertion mdandyv11 χψθψτφηψ

Proof

Step Hyp Ref Expression
1 mdandyv11.1 φ
2 mdandyv11.2 ψ
3 mdandyv11.3 χ
4 mdandyv11.4 θ
5 mdandyv11.5 τ
6 mdandyv11.6 η
7 3 2 bothtbothsame χψ
8 4 2 bothtbothsame θψ
9 7 8 pm3.2i χψθψ
10 5 1 bothfbothsame τφ
11 9 10 pm3.2i χψθψτφ
12 6 2 bothtbothsame ηψ
13 11 12 pm3.2i χψθψτφηψ