Metamath Proof Explorer


Theorem mdandyv12

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv12.1 φ
mdandyv12.2 ψ
mdandyv12.3 χ
mdandyv12.4 θ
mdandyv12.5 τ
mdandyv12.6 η
Assertion mdandyv12 χφθφτψηψ

Proof

Step Hyp Ref Expression
1 mdandyv12.1 φ
2 mdandyv12.2 ψ
3 mdandyv12.3 χ
4 mdandyv12.4 θ
5 mdandyv12.5 τ
6 mdandyv12.6 η
7 3 1 bothfbothsame χφ
8 4 1 bothfbothsame θφ
9 7 8 pm3.2i χφθφ
10 5 2 bothtbothsame τψ
11 9 10 pm3.2i χφθφτψ
12 6 2 bothtbothsame ηψ
13 11 12 pm3.2i χφθφτψηψ