Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdandyv12.1 | |
|
mdandyv12.2 | |
||
mdandyv12.3 | |
||
mdandyv12.4 | |
||
mdandyv12.5 | |
||
mdandyv12.6 | |
||
Assertion | mdandyv12 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdandyv12.1 | |
|
2 | mdandyv12.2 | |
|
3 | mdandyv12.3 | |
|
4 | mdandyv12.4 | |
|
5 | mdandyv12.5 | |
|
6 | mdandyv12.6 | |
|
7 | 3 1 | bothfbothsame | |
8 | 4 1 | bothfbothsame | |
9 | 7 8 | pm3.2i | |
10 | 5 2 | bothtbothsame | |
11 | 9 10 | pm3.2i | |
12 | 6 2 | bothtbothsame | |
13 | 11 12 | pm3.2i | |