Metamath Proof Explorer


Theorem mdandyv14

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv14.1 φ
mdandyv14.2 ψ
mdandyv14.3 χ
mdandyv14.4 θ
mdandyv14.5 τ
mdandyv14.6 η
Assertion mdandyv14 χφθψτψηψ

Proof

Step Hyp Ref Expression
1 mdandyv14.1 φ
2 mdandyv14.2 ψ
3 mdandyv14.3 χ
4 mdandyv14.4 θ
5 mdandyv14.5 τ
6 mdandyv14.6 η
7 3 1 bothfbothsame χφ
8 4 2 bothtbothsame θψ
9 7 8 pm3.2i χφθψ
10 5 2 bothtbothsame τψ
11 9 10 pm3.2i χφθψτψ
12 6 2 bothtbothsame ηψ
13 11 12 pm3.2i χφθψτψηψ