Metamath Proof Explorer


Theorem mdandyv4

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandyv4.1 φ
mdandyv4.2 ψ
mdandyv4.3 χ
mdandyv4.4 θ
mdandyv4.5 τ
mdandyv4.6 η
Assertion mdandyv4 χφθφτψηφ

Proof

Step Hyp Ref Expression
1 mdandyv4.1 φ
2 mdandyv4.2 ψ
3 mdandyv4.3 χ
4 mdandyv4.4 θ
5 mdandyv4.5 τ
6 mdandyv4.6 η
7 3 1 bothfbothsame χφ
8 4 1 bothfbothsame θφ
9 7 8 pm3.2i χφθφ
10 5 2 bothtbothsame τψ
11 9 10 pm3.2i χφθφτψ
12 6 1 bothfbothsame ηφ
13 11 12 pm3.2i χφθφτψηφ