Metamath Proof Explorer


Theorem mdandyvr10

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr10.1 φζ
mdandyvr10.2 ψσ
mdandyvr10.3 χφ
mdandyvr10.4 θψ
mdandyvr10.5 τφ
mdandyvr10.6 ηψ
Assertion mdandyvr10 χζθστζησ

Proof

Step Hyp Ref Expression
1 mdandyvr10.1 φζ
2 mdandyvr10.2 ψσ
3 mdandyvr10.3 χφ
4 mdandyvr10.4 θψ
5 mdandyvr10.5 τφ
6 mdandyvr10.6 ηψ
7 2 1 3 4 5 6 mdandyvr5 χζθστζησ