Metamath Proof Explorer


Theorem mdandyvr11

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr11.1 φζ
mdandyvr11.2 ψσ
mdandyvr11.3 χψ
mdandyvr11.4 θψ
mdandyvr11.5 τφ
mdandyvr11.6 ηψ
Assertion mdandyvr11 χσθστζησ

Proof

Step Hyp Ref Expression
1 mdandyvr11.1 φζ
2 mdandyvr11.2 ψσ
3 mdandyvr11.3 χψ
4 mdandyvr11.4 θψ
5 mdandyvr11.5 τφ
6 mdandyvr11.6 ηψ
7 2 1 3 4 5 6 mdandyvr4 χσθστζησ