Metamath Proof Explorer


Theorem mdandyvr12

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr12.1 φζ
mdandyvr12.2 ψσ
mdandyvr12.3 χφ
mdandyvr12.4 θφ
mdandyvr12.5 τψ
mdandyvr12.6 ηψ
Assertion mdandyvr12 χζθζτσησ

Proof

Step Hyp Ref Expression
1 mdandyvr12.1 φζ
2 mdandyvr12.2 ψσ
3 mdandyvr12.3 χφ
4 mdandyvr12.4 θφ
5 mdandyvr12.5 τψ
6 mdandyvr12.6 ηψ
7 2 1 3 4 5 6 mdandyvr3 χζθζτσησ