Metamath Proof Explorer


Theorem mdandyvr13

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr13.1 φζ
mdandyvr13.2 ψσ
mdandyvr13.3 χψ
mdandyvr13.4 θφ
mdandyvr13.5 τψ
mdandyvr13.6 ηψ
Assertion mdandyvr13 χσθζτσησ

Proof

Step Hyp Ref Expression
1 mdandyvr13.1 φζ
2 mdandyvr13.2 ψσ
3 mdandyvr13.3 χψ
4 mdandyvr13.4 θφ
5 mdandyvr13.5 τψ
6 mdandyvr13.6 ηψ
7 2 1 3 4 5 6 mdandyvr2 χσθζτσησ