Metamath Proof Explorer


Theorem mdandyvr15

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr15.1 φζ
mdandyvr15.2 ψσ
mdandyvr15.3 χψ
mdandyvr15.4 θψ
mdandyvr15.5 τψ
mdandyvr15.6 ηψ
Assertion mdandyvr15 χσθστσησ

Proof

Step Hyp Ref Expression
1 mdandyvr15.1 φζ
2 mdandyvr15.2 ψσ
3 mdandyvr15.3 χψ
4 mdandyvr15.4 θψ
5 mdandyvr15.5 τψ
6 mdandyvr15.6 ηψ
7 2 1 3 4 5 6 mdandyvr0 χσθστσησ