Metamath Proof Explorer


Theorem mdandyvr9

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr9.1 φζ
mdandyvr9.2 ψσ
mdandyvr9.3 χψ
mdandyvr9.4 θφ
mdandyvr9.5 τφ
mdandyvr9.6 ηψ
Assertion mdandyvr9 χσθζτζησ

Proof

Step Hyp Ref Expression
1 mdandyvr9.1 φζ
2 mdandyvr9.2 ψσ
3 mdandyvr9.3 χψ
4 mdandyvr9.4 θφ
5 mdandyvr9.5 τφ
6 mdandyvr9.6 ηψ
7 2 1 3 4 5 6 mdandyvr6 χσθζτζησ