Metamath Proof Explorer


Theorem mdandyvrx13

Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvrx13.1 φζ
mdandyvrx13.2 ψσ
mdandyvrx13.3 χψ
mdandyvrx13.4 θφ
mdandyvrx13.5 τψ
mdandyvrx13.6 ηψ
Assertion mdandyvrx13 χσθζτσησ

Proof

Step Hyp Ref Expression
1 mdandyvrx13.1 φζ
2 mdandyvrx13.2 ψσ
3 mdandyvrx13.3 χψ
4 mdandyvrx13.4 θφ
5 mdandyvrx13.5 τψ
6 mdandyvrx13.6 ηψ
7 2 1 3 4 5 6 mdandyvrx2 χσθζτσησ