Metamath Proof Explorer


Theorem meetat2

Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012)

Ref Expression
Hypotheses m.b B=BaseK
m.m ˙=meetK
m.z 0˙=0.K
m.a A=AtomsK
Assertion meetat2 KOLXBPAX˙PAX˙P=0˙

Proof

Step Hyp Ref Expression
1 m.b B=BaseK
2 m.m ˙=meetK
3 m.z 0˙=0.K
4 m.a A=AtomsK
5 1 2 3 4 meetat KOLXBPAX˙P=PX˙P=0˙
6 eleq1a PAX˙P=PX˙PA
7 6 3ad2ant3 KOLXBPAX˙P=PX˙PA
8 7 orim1d KOLXBPAX˙P=PX˙P=0˙X˙PAX˙P=0˙
9 5 8 mpd KOLXBPAX˙PAX˙P=0˙