Metamath Proof Explorer


Theorem mptexw

Description: Weak version of mptex that holds without ax-rep . If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mptexw.1 AV
mptexw.2 CV
mptexw.3 xABC
Assertion mptexw xABV

Proof

Step Hyp Ref Expression
1 mptexw.1 AV
2 mptexw.2 CV
3 mptexw.3 xABC
4 funmpt FunxAB
5 eqid xAB=xAB
6 5 dmmptss domxABA
7 1 6 ssexi domxABV
8 5 rnmptss xABCranxABC
9 3 8 ax-mp ranxABC
10 2 9 ssexi ranxABV
11 funexw FunxABdomxABVranxABVxABV
12 4 7 10 11 mp3an xABV