Metamath Proof Explorer


Theorem naim2i

Description: Constructor rule for -/\ . (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Hypotheses naim2i.1 φψ
naim2i.2 χψ
Assertion naim2i χφ

Proof

Step Hyp Ref Expression
1 naim2i.1 φψ
2 naim2i.2 χψ
3 naim2 φψχψχφ
4 1 2 3 mp2 χφ