Metamath Proof Explorer


Theorem neldifpr1

Description: The first element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Assertion neldifpr1 ¬ACAB

Proof

Step Hyp Ref Expression
1 neirr ¬AA
2 eldifpr ACABACAAAB
3 2 simp2bi ACABAA
4 1 3 mto ¬ACAB