Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | neldifpr2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr | |
|
2 | eldifpr | |
|
3 | 2 | simp3bi | |
4 | 1 3 | mto | |