Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification nfralwOLD  
				
		 
		
			
		 
		Description:   Obsolete version of nfralw  as of 13-Dec-2024.  (Contributed by NM , 1-Sep-1999)   (Revised by GG , 10-Jan-2024) 
       (Proof modification is discouraged.)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfralw.1   ⊢    Ⅎ   _  x  A       
					 
					
						nfralw.2   ⊢   Ⅎ  x   φ        
					 
				
					Assertion 
					nfralwOLD   ⊢   Ⅎ  x   ∀  y  ∈  A   φ          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfralw.1  ⊢    Ⅎ   _  x  A       
						
							2 
								
							 
							nfralw.2  ⊢   Ⅎ  x   φ        
						
							3 
								
							 
							nftru  ⊢   Ⅎ  y  ⊤       
						
							4 
								1 
							 
							a1i   ⊢  ⊤  →    Ⅎ   _  x  A         
						
							5 
								2 
							 
							a1i   ⊢  ⊤  →   Ⅎ  x   φ          
						
							6 
								3  4  5 
							 
							nfraldw   ⊢  ⊤  →   Ⅎ  x   ∀  y  ∈  A   φ            
						
							7 
								6 
							 
							mptru  ⊢   Ⅎ  x   ∀  y  ∈  A   φ