Metamath Proof Explorer
		
		
		
		Description:  The negative of a nonnegative integer is an integer.  (Contributed by Mario Carneiro, 18-Feb-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | nn0negzi.1 |  | 
				
					|  | Assertion | nn0negzi |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0negzi.1 |  | 
						
							| 2 |  | nn0negz |  | 
						
							| 3 | 1 2 | ax-mp |  |