Metamath Proof Explorer


Theorem nnoddn2prmb

Description: A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021)

Ref Expression
Assertion nnoddn2prmb N2N¬2N

Proof

Step Hyp Ref Expression
1 eldifi N2N
2 oddn2prm N2¬2N
3 1 2 jca N2N¬2N
4 simpl N¬2NN
5 z2even 22
6 breq2 N=22N22
7 5 6 mpbiri N=22N
8 7 a1i NN=22N
9 8 con3dimp N¬2N¬N=2
10 9 neqned N¬2NN2
11 nelsn N2¬N2
12 10 11 syl N¬2N¬N2
13 4 12 eldifd N¬2NN2
14 3 13 impbii N2N¬2N