Metamath Proof Explorer


Theorem numsuc

Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numnncl.1 T0
numnncl.2 A0
numcl.2 B0
numsuc.4 B+1=C
numsuc.5 N=TA+B
Assertion numsuc N+1=TA+C

Proof

Step Hyp Ref Expression
1 numnncl.1 T0
2 numnncl.2 A0
3 numcl.2 B0
4 numsuc.4 B+1=C
5 numsuc.5 N=TA+B
6 5 oveq1i N+1=TA+B+1
7 1 2 nn0mulcli TA0
8 7 nn0cni TA
9 3 nn0cni B
10 ax-1cn 1
11 8 9 10 addassi TA+B+1=TA+B+1
12 4 oveq2i TA+B+1=TA+C
13 6 11 12 3eqtri N+1=TA+C