Metamath Proof Explorer


Theorem obsrcl

Description: Reverse closure for an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Assertion obsrcl BOBasisWWPreHil

Proof

Step Hyp Ref Expression
1 eqid BaseW=BaseW
2 eqid 𝑖W=𝑖W
3 eqid ScalarW=ScalarW
4 eqid 1ScalarW=1ScalarW
5 eqid 0ScalarW=0ScalarW
6 eqid ocvW=ocvW
7 eqid 0W=0W
8 1 2 3 4 5 6 7 isobs BOBasisWWPreHilBBaseWxByBx𝑖Wy=ifx=y1ScalarW0ScalarWocvWB=0W
9 8 simp1bi BOBasisWWPreHil