Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthogonal projection and orthonormal bases
obsrcl
Next ⟩
obsss
Metamath Proof Explorer
Ascii
Unicode
Theorem
obsrcl
Description:
Reverse closure for an orthonormal basis.
(Contributed by
Mario Carneiro
, 23-Oct-2015)
Ref
Expression
Assertion
obsrcl
⊢
B
∈
OBasis
⁡
W
→
W
∈
PreHil
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
W
=
Base
W
2
eqid
⊢
⋅
𝑖
⁡
W
=
⋅
𝑖
⁡
W
3
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
4
eqid
⊢
1
Scalar
⁡
W
=
1
Scalar
⁡
W
5
eqid
⊢
0
Scalar
⁡
W
=
0
Scalar
⁡
W
6
eqid
⊢
ocv
⁡
W
=
ocv
⁡
W
7
eqid
⊢
0
W
=
0
W
8
1
2
3
4
5
6
7
isobs
⊢
B
∈
OBasis
⁡
W
↔
W
∈
PreHil
∧
B
⊆
Base
W
∧
∀
x
∈
B
∀
y
∈
B
x
⋅
𝑖
⁡
W
y
=
if
x
=
y
1
Scalar
⁡
W
0
Scalar
⁡
W
∧
ocv
⁡
W
⁡
B
=
0
W
9
8
simp1bi
⊢
B
∈
OBasis
⁡
W
→
W
∈
PreHil