Metamath Proof Explorer


Theorem opabex2

Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Hypotheses opabex2.1 φAV
opabex2.2 φBW
opabex2.3 φψxA
opabex2.4 φψyB
Assertion opabex2 φxy|ψV

Proof

Step Hyp Ref Expression
1 opabex2.1 φAV
2 opabex2.2 φBW
3 opabex2.3 φψxA
4 opabex2.4 φψyB
5 1 2 xpexd φA×BV
6 3 4 opabssxpd φxy|ψA×B
7 5 6 ssexd φxy|ψV