Metamath Proof Explorer


Theorem opeq12i

Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006) (Proof shortened by Eric Schmidt, 4-Apr-2007)

Ref Expression
Hypotheses opeq1i.1 A=B
opeq12i.2 C=D
Assertion opeq12i AC=BD

Proof

Step Hyp Ref Expression
1 opeq1i.1 A=B
2 opeq12i.2 C=D
3 opeq12 A=BC=DAC=BD
4 1 2 3 mp2an AC=BD