Metamath Proof Explorer


Theorem phlplusg

Description: The additive operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis phlfn.h H=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
Assertion phlplusg +˙X+˙=+H

Proof

Step Hyp Ref Expression
1 phlfn.h H=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
2 1 phlstr HStruct18
3 plusgid +𝑔=Slot+ndx
4 snsstp2 +ndx+˙BasendxB+ndx+˙ScalarndxT
5 ssun1 BasendxB+ndx+˙ScalarndxTBasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
6 5 1 sseqtrri BasendxB+ndx+˙ScalarndxTH
7 4 6 sstri +ndx+˙H
8 2 3 7 strfv +˙X+˙=+H