Metamath Proof Explorer


Theorem phlsca

Description: The ring of scalars of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis phlfn.h H=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
Assertion phlsca TXT=ScalarH

Proof

Step Hyp Ref Expression
1 phlfn.h H=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
2 1 phlstr HStruct18
3 scaid Scalar=SlotScalarndx
4 snsstp3 ScalarndxTBasendxB+ndx+˙ScalarndxT
5 ssun1 BasendxB+ndx+˙ScalarndxTBasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
6 5 1 sseqtrri BasendxB+ndx+˙ScalarndxTH
7 4 6 sstri ScalarndxTH
8 2 3 7 strfv TXT=ScalarH