Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Properties of Hilbert subspaces Projectors (cont.) pjpj0i  
				
		 
		
			
		 
		Description:   Decomposition of a vector into projections.  (Contributed by NM , 26-Oct-1999)   (Revised by Mario Carneiro , 15-May-2014) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						pjcli.1   ⊢   H  ∈  C  ℋ      
					 
					
						pjcli.2   ⊢   A  ∈   ℋ       
					 
				
					Assertion 
					pjpj0i   ⊢   A  =    proj  ℎ ⁡  H   ⁡  A   +  ℎ   proj  ℎ ⁡   ⊥  ⁡  H    ⁡  A       
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							pjcli.1  ⊢   H  ∈  C  ℋ      
						
							2 
								
							 
							pjcli.2  ⊢   A  ∈   ℋ       
						
							3 
								
							 
							axpjpj   ⊢    H  ∈  C  ℋ   ∧   A  ∈   ℋ     →   A  =    proj  ℎ ⁡  H   ⁡  A   +  ℎ   proj  ℎ ⁡   ⊥  ⁡  H    ⁡  A         
						
							4 
								1  2  3 
							 
							mp2an  ⊢   A  =    proj  ℎ ⁡  H   ⁡  A   +  ℎ   proj  ℎ ⁡   ⊥  ⁡  H    ⁡  A