Metamath Proof Explorer


Theorem pm13.13b

Description: Theorem *13.13 in WhiteheadRussell p. 178 with different variable substitution. (Contributed by Andrew Salmon, 3-Jun-2011)

Ref Expression
Assertion pm13.13b [˙A/x]˙φx=Aφ

Proof

Step Hyp Ref Expression
1 sbceq1a x=Aφ[˙A/x]˙φ
2 1 biimparc [˙A/x]˙φx=Aφ