Metamath Proof Explorer


Theorem pm2.61ne

Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses pm2.61ne.1 A=Bψχ
pm2.61ne.2 φABψ
pm2.61ne.3 φχ
Assertion pm2.61ne φψ

Proof

Step Hyp Ref Expression
1 pm2.61ne.1 A=Bψχ
2 pm2.61ne.2 φABψ
3 pm2.61ne.3 φχ
4 3 1 imbitrrid A=Bφψ
5 2 expcom ABφψ
6 4 5 pm2.61ine φψ